272 research outputs found

    Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication

    Get PDF
    Understanding the query complexity for testing linear-invariant properties has been a central open problem in the study of algebraic property testing. Triangle-freeness in Boolean functions is a simple property whose testing complexity is unknown. Three Boolean functions f1f_1, f2f_2 and f3:F2kβ†’{0,1}f_3: \mathbb{F}_2^k \to \{0, 1\} are said to be triangle free if there is no x,y∈F2kx, y \in \mathbb{F}_2^k such that f1(x)=f2(y)=f3(x+y)=1f_1(x) = f_2(y) = f_3(x + y) = 1. This property is known to be strongly testable (Green 2005), but the number of queries needed is upper-bounded only by a tower of twos whose height is polynomial in 1 / \epsislon, where \epsislon is the distance between the tested function triple and triangle-freeness, i.e., the minimum fraction of function values that need to be modified to make the triple triangle free. A lower bound of (1/Ο΅)2.423(1 / \epsilon)^{2.423} for any one-sided tester was given by Bhattacharyya and Xie (2010). In this work we improve this bound to (1/Ο΅)6.619(1 / \epsilon)^{6.619}. Interestingly, we prove this by way of a combinatorial construction called \emph{uniquely solvable puzzles} that was at the heart of Coppersmith and Winograd's renowned matrix multiplication algorithm

    Polymatroid Prophet Inequalities

    Full text link
    Consider a gambler and a prophet who observe a sequence of independent, non-negative numbers. The gambler sees the numbers one-by-one whereas the prophet sees the entire sequence at once. The goal of both is to decide on fractions of each number they want to keep so as to maximize the weighted fractional sum of the numbers chosen. The classic result of Krengel and Sucheston (1977-78) asserts that if both the gambler and the prophet can pick one number, then the gambler can do at least half as well as the prophet. Recently, Kleinberg and Weinberg (2012) have generalized this result to settings where the numbers that can be chosen are subject to a matroid constraint. In this note we go one step further and show that the bound carries over to settings where the fractions that can be chosen are subject to a polymatroid constraint. This bound is tight as it is already tight for the simple setting where the gambler and the prophet can pick only one number. An interesting application of our result is in mechanism design, where it leads to improved results for various problems

    Behavioral Mechanism Design: Optimal Contests for Simple Agents

    Full text link
    Incentives are more likely to elicit desired outcomes when they are designed based on accurate models of agents' strategic behavior. A growing literature, however, suggests that people do not quite behave like standard economic agents in a variety of environments, both online and offline. What consequences might such differences have for the optimal design of mechanisms in these environments? In this paper, we explore this question in the context of optimal contest design for simple agents---agents who strategically reason about whether or not to participate in a system, but not about the input they provide to it. Specifically, consider a contest where nn potential contestants with types (qi,ci)(q_i,c_i) each choose between participating and producing a submission of quality qiq_i at cost cic_i, versus not participating at all, to maximize their utilities. How should a principal distribute a total prize VV amongst the nn ranks to maximize some increasing function of the qualities of elicited submissions in a contest with such simple agents? We first solve the optimal contest design problem for settings with homogenous participation costs ci=cc_i = c. Here, the optimal contest is always a simple contest, awarding equal prizes to the top jβˆ—j^* contestants for a suitable choice of jβˆ—j^*. (In comparable models with strategic effort choices, the optimal contest is either a winner-take-all contest or awards possibly unequal prizes, depending on the curvature of agents' effort cost functions.) We next address the general case with heterogeneous costs where agents' types are inherently two-dimensional, significantly complicating equilibrium analysis. Our main result here is that the winner-take-all contest is a 3-approximation of the optimal contest when the principal's objective is to maximize the quality of the best elicited contribution.Comment: This is the full version of a paper in the ACM Conference on Economics and Computation (ACM-EC), 201

    Inferential Privacy Guarantees for Differentially Private Mechanisms

    Get PDF
    The correlations and network structure amongst individuals in datasets today---whether explicitly articulated, or deduced from biological or behavioral connections---pose new issues around privacy guarantees, because of inferences that can be made about one individual from another's data. This motivates quantifying privacy in networked contexts in terms of "inferential privacy"---which measures the change in beliefs about an individual's data from the result of a computation---as originally proposed by Dalenius in the 1970's. Inferential privacy is implied by differential privacy when data are independent, but can be much worse when data are correlated; indeed, simple examples, as well as a general impossibility theorem of Dwork and Naor, preclude the possibility of achieving non-trivial inferential privacy when the adversary can have arbitrary auxiliary information. In this paper, we ask how differential privacy guarantees translate to guarantees on inferential privacy in networked contexts: specifically, under what limitations on the adversary's information about correlations, modeled as a prior distribution over datasets, can we deduce an inferential guarantee from a differential one? We prove two main results. The first result pertains to distributions that satisfy a natural positive-affiliation condition, and gives an upper bound on the inferential privacy guarantee for any differentially private mechanism. This upper bound is matched by a simple mechanism that adds Laplace noise to the sum of the data. The second result pertains to distributions that have weak correlations, defined in terms of a suitable "influence matrix". The result provides an upper bound for inferential privacy in terms of the differential privacy parameter and the spectral norm of this matrix

    Privacy-Compatibility For General Utility Metrics

    Get PDF
    In this note, we present a complete characterization of the utility metrics that allow for non-trivial differential privacy guarantees
    • …
    corecore